

High Density 3D CMOS Mixed-Signal Opportunities

The **3D-MUSE** project
Univ. of Oslo, CEA/LETI, IDEAS AS, Lund University, ST
Microelectronics, INP Grenoble

Philipp Häfliger hafliger@ifi.uio.no

The 3D-MUSE Project

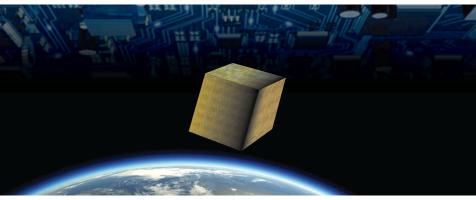
Mixed-Signal Circuits Scaling

Multi-Process Sequential 3D Integration and System-in-Cube State-of-the-Art Parallel 3D Integration Beyond State-of-the-Art Sequential 3D Integration

Prospects for 2D sensor arrays

Conclusion

The 3D-MUSE Project


Mixed-Signal Circuits Scaling

Multi-Process Sequential 3D Integration and System-in-Cube State-of-the-Art Parallel 3D Integration Beyond State-of-the-Art Sequential 3D Integration

Prospects for 2D sensor arrays

Conclusion

System-in-Cube (SinC) Smart Sensor Interfaces (SSI) in Sequential 3D CMOS Technology

The 3D-MUSE Project

Mixed-Signal Circuits Scaling

Multi-Process Sequential 3D Integration and System-in-Cube State-of-the-Art Parallel 3D Integration Beyond State-of-the-Art Sequential 3D Integration

Prospects for 2D sensor arrays

Conclusion

Bottlenecks for IoT/portable devices

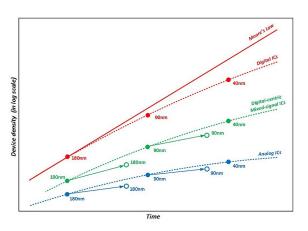
More challenging to scale (power, size, price) than digital electronics:

- mixed signal circuits
- sensors
- communication (antennas)
- energy supply

Conclusion:

- Digital electronics is no longer the bottleneck for the IoT.
- The main sales argument for IoT devices is not more processing power/memory
- The main sales argument for IoT devices is the number of ways they can interact with the real world

Bottlenecks for IoT/portable devices


More challenging to scale (power, size, price) than digital electronics:

- >mixed signal circuits <</p>
- sensors
- communication (antennas)
- energy supply

Conclusion:

- Digital electronics is no longer the bottleneck for the IoT.
- The main sales argument for IoT devices is not more processing power/memory
- ► The main sales argument for IoT devices is the number of ways they can interact with the real world

Analog and Mixed-Signal do not scale according to Moore's Law

Consequence:
While the price per
digital device is
going down with
more adavaned
CMOS technology,
the price per analog
device is actually
going up.

courtesy of SiLabs

http://www.embedded-computing.com/processing/

 $\verb|the-art-and-science-of-rf-and-mixed-signal-design|$

The 3D-MUSE Project

Mixed-Signal Circuits Scaling

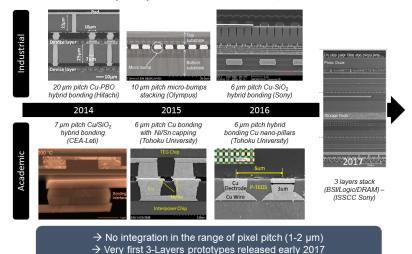
Multi-Process Sequential 3D Integration and System-in-Cube State-of-the-Art Parallel 3D Integration Beyond State-of-the-Art Sequential 3D Integration

Prospects for 2D sensor arrays

Conclusion

The 3D-MUSE Project

Mixed-Signal Circuits Scaling


Multi-Process Sequential 3D Integration and System-in-Cube State-of-the-Art Parallel 3D Integration Beyond State-of-the-Art Sequential 3D Integration

Prospects for 2D sensor arrays

Conclusion

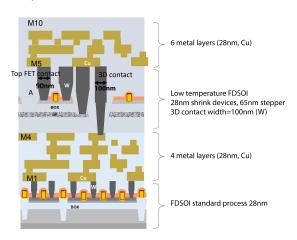
Parallel 3D integration

Trans-Silicon Via (TSV) pitch still above $1-2\mu m$

courtesy of CEA/LETI, Grenoble, France

The 3D-MUSE Project

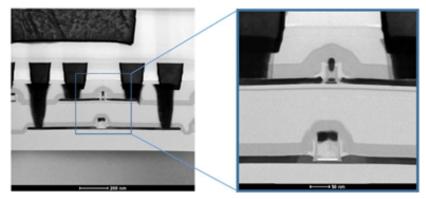
Mixed-Signal Circuits Scaling


Multi-Process Sequential 3D Integration and System-in-Cube State-of-the-Art Parallel 3D Integration Beyond State-of-the-Art Sequential 3D Integration

Prospects for 2D sensor arrays

Conclusion

Sequential 3D integration (1/2)


Inter-Tier Interconnect pitch at 220nm (2017) **5-10x better than SoA, i.e. 25-100x better density** Unique to 3D-MUSE: inter-tier metal.

courtesy of CEA/LETI, Grenoble, France

Sequential 3D integration (2/2)

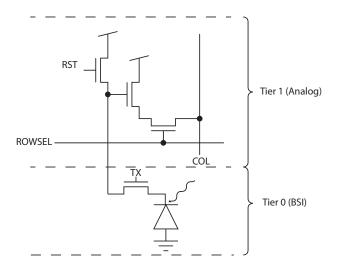
courtesy of CEA/LETI, Grenoble, France

System-in-Cube vs System-in-Stack

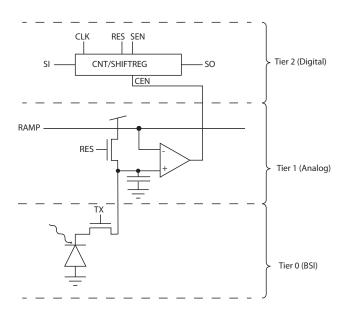
Adavantages in production cost, energy consumption, noise reduction, processing speed

The 3D-MUSE Project

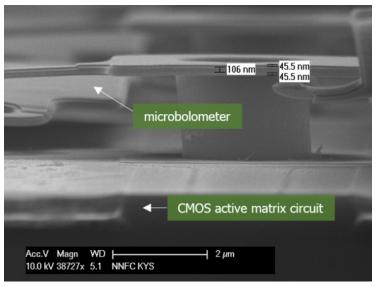
Mixed-Signal Circuits Scaling


Multi-Process Sequential 3D Integration and System-in-Cube State-of-the-Art Parallel 3D Integration Beyond State-of-the-Art Sequential 3D Integration

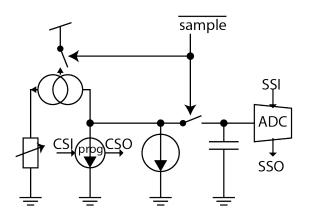
Prospects for 2D sensor arrays


Conclusion

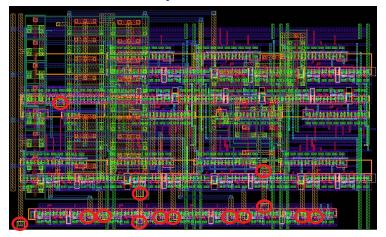
3D: BSI and APS


Even closer to 100% fill factor without micro-lens array. 'TSV' in the order of 100nm. Sub-0.8 $^2\mu\text{m}^2$ pixels?

3D: BSI and in-pixel ADC



Micro-Bolometer Arrays


from 'Electro-Thermal Modeling and Experimental Validation of Integrated Microbolometer with ROIC' by Gyungtae Kim et al.

MBA ROIC Pixel 3DSI Block Diagram

Bolomter ROIC pixel concept: all 'analog' transistors in 65nm top tier all digital in 28nm bottom tier.

MBA ROIC Pixel 3DSI Layout

A $8\mu m \times 13\mu m$ layout of a micro-bolometer array (MBA) 3DSI read-out integrated circuit (ROIC) pixel, FE, 10b ADC, 4b FPN calibration. 14 3D vias: 5 power, 8 calibration bits, 1 comparator output. Connection to MEMS bolometer would be parallel 3D, e.g. Cu-Cu.

3D: In general SIMD in a 2D array

(The Neuromorphs have done this for ages in 2D tech with abominable fill-factor)

Processing both in analog or digital domain. For example 2D-convolution (aka: feature maps, CNN, ...), image overlay, or even small general purpose in-pixel processors

The 3D-MUSE Project

Mixed-Signal Circuits Scaling

Multi-Process Sequential 3D Integration and System-in-Cube State-of-the-Art Parallel 3D Integration Beyond State-of-the-Art Sequential 3D Integration

Prospects for 2D sensor arrays

Conclusion

Take Home Messages

What I told you:

- digital is no longer the scaling bottleneck ...
- ... nor is it the most important sales argument
- e.g. mixed-signal is more challenging to scale, promising better pay off
- multi-process 3DSI is a mixed-signal designer's dream
- real circuits in a volume within reach with many benefits in cost and performance

What's next?

- near future developments will probably see a mix of monolithic/sequential and parallel 3D
- appropriate design tools are needed

The 3D-MUSE Project

Mixed-Signal Circuits Scaling

Multi-Process Sequential 3D Integration and System-in-Cube State-of-the-Art Parallel 3D Integration Beyond State-of-the-Art Sequential 3D Integration

Prospects for 2D sensor arrays

Conclusion

Contact Information

Philipp Häfliger, hafliger@ifi.uio http://www.3dmuse.eu http://heim.ifi.uio.no/~hafliger/