Workshop on Nonlinear Photonics and Applications Abstracts

TUESDAY 25th OCTOBER

SESSION 1 – Fiber Lasers and Systems		
14:00	Sergei Turitsyn (Aston University)	
	Nonlinear dynamics in fibre lasers with semiconductor optical amplifier	
	I will discuss nonlinear dynamics of radiation in the pulsed fiber lasers using the	
	semiconductor optical amplifier (SOA) as the gain medium.	
14:25	Regina Gumenyuk (Tampere University)	
	Design guidelines for ultrashort pulse generation by a Mamyshev regenerator	
	Fiber based Mamyshev regenerators provide potentiality for a low cost, pulse-on-	
	demand source development with pulse durations down to the hundred femtosecond	
	scale. Based on nonlinear broadening of gain switched diode laser pulses in fiber and	
	consequent pulse shaping methods, these sources can provide an alternative for	
	mode-locked systems. We study numerically and experimentally the properties and	
14.50	Arroud Musset (UU)	
14:50	Arnaud Mussot (ULIIIE)	
	We experimentally demonstrate a nevel approach to generate an all fiber, frequency	
	agile tri-comb light source with a high mutual coherence, by propagating the pulses	
	within a multicore nonlinear fiber	
15.15	Maria Chernysheya (Leibniz Institute of Photonic Technology)	
15.15	Illtrashort nulse interaction dynamics in a free-running hidirectional mode-locked	
	fibre laser and applications in rotation sensing	
	The fundamental study of the ultrafast phenomena in fibre laser cavities can provide a	
	basis for further improvement of the generation performance and improve cost-metric	
	factors, stability and versatility of laser-based tools and, therefore, resulting	
	applications.	
	In this context, relying on a pair of synchronised pulse trains, ultrafast metrology and	
	dual-comb spectroscopy have not obtained their full force and effect due overall	
	immaturity of the field of prominent bidirectional ultrafast lasers and unexplored	
	properties of counter-propagating pulse generation. Importantly, theoretical and	
	experimental investigations rarely focus on the bidirectional ultrafast generation and,	
	therefore, do not provide an understanding of the nature of the nonlinear collision and	
	interaction processes in bidirectional fibre laser cavities. In my presentation, I will	

-					
	discuss the observed pulse formation dynamics through pulse collision in bidirectional				
	lasers and the variety of generation regimes regarding the intracavity nonlinear				
	interaction of counter-propagating pulses. This observation indicates the different				
	mechanisms of colliding mode-locking and synchronisation of counter-propagating				
	channels.				
	Finally, I will show that the real-time analysis of bidirectional pulse dynamics in the				
	intensity and single-shot spectral domains allows high-sensitive and high-resolution				
	measurements of slow angular rotation: down to 0.1 mrad/sec in an active laser				
	gyroscope; and 5.8 μ deg/s in a passive Mach-Zender interferometer scheme.				
15:40	Thibaut Sylvestre (CNRS FEMTO-ST Institute)				
	Recent progress in supercontinuum fiber lasers: Challenges and Perspectives				
	Supercontinuum fiber technology and its industrial applications have matured				
	considerably these last few years. The scientific challenges faced in recent years were				
	to overcome the current shortcomings of SC sources in terms of wavelength coverage,				
	noise, power density, and robustness to offer a truly unique and disruptive technology				
	for societal and industrial challenges, such as pollution and food quality monitoring,				
	bio-imaging, molecular spectroscopy, detection and monitoring of key diseases, such				
	as cancer and glaucoma.				
	We review our recent work on supercontinuum generation in specialized optical fibers.				
	Significant progress has been made in the emerging mid-UV and IR wavelength ranges				
	for OCT applications and molecular spectroscopy, as well as in ultra-low noise coherent				
	sources using fully normal scatter fibers. As a result, supercontinuum technology and				
	its industrial applications have matured considerably.				
	·· ·				
	SESSION 2 – Multimode and Hollow Core Fibers				
16:35	SESSION 2 – Multimode and Hollow Core Fibers Stefan Wabnitz (Sapienza University of Rome)				
16:35	SESSION 2 – Multimode and Hollow Core Fibers Stefan Wabnitz (Sapienza University of Rome) Statistical mechanics of multimode fiber beams				
16:35	SESSION 2 – Multimode and Hollow Core Fibers Stefan Wabnitz (Sapienza University of Rome) Statistical mechanics of multimode fiber beams We describe theory and experiments of multimode beam propagation and interactions				
16:35	SESSION 2 – Multimode and Hollow Core Fibers Stefan Wabnitz (Sapienza University of Rome) Statistical mechanics of multimode fiber beams We describe theory and experiments of multimode beam propagation and interactions in multimode graded index optical fibers. Statistical mechanics permits to describe and				
16:35	SESSION 2 – Multimode and Hollow Core Fibers Stefan Wabnitz (Sapienza University of Rome) Statistical mechanics of multimode fiber beams We describe theory and experiments of multimode beam propagation and interactions in multimode graded index optical fibers. Statistical mechanics permits to describe and forecast the evolution of complex nonlinear multimode light.				
16:35	SESSION 2 – Multimode and Hollow Core Fibers Stefan Wabnitz (Sapienza University of Rome) Statistical mechanics of multimode fiber beams We describe theory and experiments of multimode beam propagation and interactions in multimode graded index optical fibers. Statistical mechanics permits to describe and forecast the evolution of complex nonlinear multimode light. Günter Steinmeyer (Max Born Institut)				
16:35 17:00	SESSION 2 – Multimode and Hollow Core Fibers Stefan Wabnitz (Sapienza University of Rome) Statistical mechanics of multimode fiber beams We describe theory and experiments of multimode beam propagation and interactions in multimode graded index optical fibers. Statistical mechanics permits to describe and forecast the evolution of complex nonlinear multimode light. Günter Steinmeyer (Max Born Institut) Entropy loopholes in multimode fiber self-cleaning				
16:35 17:00	SESSION 2 – Multimode and Hollow Core FibersStefan Wabnitz (Sapienza University of Rome) Statistical mechanics of multimode fiber beamsWe describe theory and experiments of multimode beam propagation and interactions in multimode graded index optical fibers. Statistical mechanics permits to describe and forecast the evolution of complex nonlinear multimode light.Günter Steinmeyer (Max Born Institut) Entropy loopholes in multimode fiber self-cleaningNonlinear optical effects have been experimentally shown to give rise to remarkable				
16:35 17:00	SESSION 2 – Multimode and Hollow Core Fibers Stefan Wabnitz (Sapienza University of Rome) Statistical mechanics of multimode fiber beams We describe theory and experiments of multimode beam propagation and interactions in multimode graded index optical fibers. Statistical mechanics permits to describe and forecast the evolution of complex nonlinear multimode light. Günter Steinmeyer (Max Born Institut) Entropy loopholes in multimode fiber self-cleaning Nonlinear optical effects have been experimentally shown to give rise to remarkable beam self-cleaning in multimode fibers. With increasing optical power, linear-optical				
16:35 17:00	SESSION 2 – Multimode and Hollow Core FibersStefan Wabnitz (Sapienza University of Rome) Statistical mechanics of multimode fiber beamsWe describe theory and experiments of multimode beam propagation and interactions in multimode graded index optical fibers. Statistical mechanics permits to describe and forecast the evolution of complex nonlinear multimode light.Günter Steinmeyer (Max Born Institut) Entropy loopholes in multimode fiber self-cleaningNonlinear optical effects have been experimentally shown to give rise to remarkable beam self-cleaning in multimode fibers. With increasing optical power, linear-optical speckle patterns eventually condense into a few low-order modes. Recently, a				
16:35	SESSION 2 – Multimode and Hollow Core FibersStefan Wabnitz (Sapienza University of Rome) Statistical mechanics of multimode fiber beamsWe describe theory and experiments of multimode beam propagation and interactions in multimode graded index optical fibers. Statistical mechanics permits to describe and forecast the evolution of complex nonlinear multimode light.Günter Steinmeyer (Max Born Institut) Entropy loopholes in multimode fiber self-cleaningNonlinear optical effects have been experimentally shown to give rise to remarkable beam self-cleaning in multimode fibers. With increasing optical power, linear-optical speckle patterns eventually condense into a few low-order modes. Recently, a thermodynamic theory emerged which explains self-cleaning as a thermalization				
16:35	SESSION 2 – Multimode and Hollow Core FibersStefan Wabnitz (Sapienza University of Rome) Statistical mechanics of multimode fiber beamsWe describe theory and experiments of multimode beam propagation and interactions in multimode graded index optical fibers. Statistical mechanics permits to describe and forecast the evolution of complex nonlinear multimode light.Günter Steinmeyer (Max Born Institut) Entropy loopholes in multimode fiber self-cleaningNonlinear optical effects have been experimentally shown to give rise to remarkable beam self-cleaning in multimode fibers. With increasing optical power, linear-optical speckle patterns eventually condense into a few low-order modes. Recently, a thermodynamic theory emerged which explains self-cleaning as a thermalization process, giving rise to a Rayleigh-Jeans distribution. While this theory correctly explains				
16:35	SESSION 2 – Multimode and Hollow Core FibersStefan Wabnitz (Sapienza University of Rome) Statistical mechanics of multimode fiber beamsWe describe theory and experiments of multimode beam propagation and interactions in multimode graded index optical fibers. Statistical mechanics permits to describe and forecast the evolution of complex nonlinear multimode light.Günter Steinmeyer (Max Born Institut)Entropy loopholes in multimode fiber self-cleaningNonlinear optical effects have been experimentally shown to give rise to remarkable beam self-cleaning in multimode fibers. With increasing optical power, linear-optical speckle patterns eventually condense into a few low-order modes. Recently, a thermodynamic theory emerged which explains self-cleaning as a thermalization process, giving rise to a Rayleigh-Jeans distribution. While this theory correctly explains several aspects of this condensation process it fails to explain a decrease of entropy				
16:35	SESSION 2 – Multimode and Hollow Core FibersStefan Wabnitz (Sapienza University of Rome) Statistical mechanics of multimode fiber beamsWe describe theory and experiments of multimode beam propagation and interactions in multimode graded index optical fibers. Statistical mechanics permits to describe and forecast the evolution of complex nonlinear multimode light.Günter Steinmeyer (Max Born Institut) Entropy loopholes in multimode fiber self-cleaningNonlinear optical effects have been experimentally shown to give rise to remarkable beam self-cleaning in multimode fibers. With increasing optical power, linear-optical speckle patterns eventually condense into a few low-order modes. Recently, a thermodynamic theory emerged which explains self-cleaning as a thermalization process, giving rise to a Rayleigh-Jeans distribution. While this theory correctly explains several aspects of this condensation process it fails to explain a decrease of entropy seen in several experiments. This apparent violation of the second law of				
16:35	SESSION 2 – Multimode and Hollow Core Fibers Stefan Wabnitz (Sapienza University of Rome) Statistical mechanics of multimode fiber beams We describe theory and experiments of multimode beam propagation and interactions in multimode graded index optical fibers. Statistical mechanics permits to describe and forecast the evolution of complex nonlinear multimode light. Günter Steinmeyer (Max Born Institut) Entropy loopholes in multimode fiber self-cleaning Nonlinear optical effects have been experimentally shown to give rise to remarkable beam self-cleaning in multimode fibers. With increasing optical power, linear-optical speckle patterns eventually condense into a few low-order modes. Recently, a thermodynamic theory emerged which explains self-cleaning as a thermalization process, giving rise to a Rayleigh-Jeans distribution. While this theory correctly explains several aspects of this condensation process it fails to explain a decrease of entropy seen in several experiments. This apparent violation of the second law of thermodynamics is indicative for a previously unrecognized dissipation channel, which				
16:35	SESSION 2 – Multimode and Hollow Core Fibers Stefan Wabnitz (Sapienza University of Rome) Statistical mechanics of multimode fiber beams We describe theory and experiments of multimode beam propagation and interactions in multimode graded index optical fibers. Statistical mechanics permits to describe and forecast the evolution of complex nonlinear multimode light. Günter Steinmeyer (Max Born Institut) Entropy loopholes in multimode fiber self-cleaning Nonlinear optical effects have been experimentally shown to give rise to remarkable beam self-cleaning in multimode fibers. With increasing optical power, linear-optical speckle patterns eventually condense into a few low-order modes. Recently, a thermodynamic theory emerged which explains self-cleaning as a thermalization process, giving rise to a Rayleigh-Jeans distribution. While this theory correctly explains several aspects of this condensation process it fails to explain a decrease of entropy seen in several experiments. This apparent violation of the second law of thermodynamics is indicative for a previously unrecognized dissipation channel, which will be unveiled in this talk.				
16:35 17:00 17:25	SESSION 2 – Multimode and Hollow Core Fibers Stefan Wabnitz (Sapienza University of Rome) Statistical mechanics of multimode fiber beams We describe theory and experiments of multimode beam propagation and interactions in multimode graded index optical fibers. Statistical mechanics permits to describe and forecast the evolution of complex nonlinear multimode light. Günter Steinmeyer (Max Born Institut) Entropy loopholes in multimode fiber self-cleaning Nonlinear optical effects have been experimentally shown to give rise to remarkable beam self-cleaning in multimode fibers. With increasing optical power, linear-optical speckle patterns eventually condense into a few low-order modes. Recently, a thermodynamic theory emerged which explains self-cleaning as a thermalization process, giving rise to a Rayleigh-Jeans distribution. While this theory correctly explains several aspects of this condensation process it fails to explain a decrease of entropy seen in several experiments. This apparent violation of the second law of thermodynamics is indicative for a previously unrecognized dissipation channel, which will be unveiled in this talk. Francesco Tani (Max Planck Institute for the Science of Light)				
16:35 17:00	SESSION 2 – Multimode and Hollow Core FibersStefan Wabnitz (Sapienza University of Rome)Statistical mechanics of multimode fiber beamsWe describe theory and experiments of multimode beam propagation and interactions in multimode graded index optical fibers. Statistical mechanics permits to describe and forecast the evolution of complex nonlinear multimode light.Günter Steinmeyer (Max Born Institut)Entropy loopholes in multimode fiber self-cleaningNonlinear optical effects have been experimentally shown to give rise to remarkable beam self-cleaning in multimode fibers. With increasing optical power, linear-optical speckle patterns eventually condense into a few low-order modes. Recently, a thermodynamic theory emerged which explains self-cleaning as a thermalization process, giving rise to a Rayleigh-Jeans distribution. While this theory correctly explains several aspects of this condensation process it fails to explain a decrease of entropy seen in several experiments. This apparent violation of the second law of thermodynamics is indicative for a previously unrecognized dissipation channel, which will be unveiled in this talk.Francesco Tani (Max Planck Institute for the Science of Light) Gas-based nonlinear optics in hollow-core fibres				
16:35 17:00 17:25	SESSION 2 – Multimode and Hollow Core FibersStefan Wabnitz (Sapienza University of Rome)Statistical mechanics of multimode fiber beamsWe describe theory and experiments of multimode beam propagation and interactions in multimode graded index optical fibers. Statistical mechanics permits to describe and forecast the evolution of complex nonlinear multimode light.Günter Steinmeyer (Max Born Institut)Entropy loopholes in multimode fiber self-cleaningNonlinear optical effects have been experimentally shown to give rise to remarkable beam self-cleaning in multimode fibers. With increasing optical power, linear-optical speckle patterns eventually condense into a few low-order modes. Recently, a thermodynamic theory emerged which explains self-cleaning as a thermalization process, giving rise to a Rayleigh-Jeans distribution. While this theory correctly explains several aspects of this condensation process it fails to explain a decrease of entropy seen in several experiments. This apparent violation of the second law of thermodynamics is indicative for a previously unrecognized dissipation channel, which will be unveiled in this talk.Francesco Tani (Max Planck Institute for the Science of Light) Gas-based nonlinear optics in hollow-core fibresGas-filled fibres allow for combining nonlinear fibre optics and high-field laser science.				
16:35 17:00 17:25	SESSION 2 – Multimode and Hollow Core FibersStefan Wabnitz (Sapienza University of Rome)Statistical mechanics of multimode fiber beamsWe describe theory and experiments of multimode beam propagation and interactions in multimode graded index optical fibers. Statistical mechanics permits to describe and forecast the evolution of complex nonlinear multimode light.Günter Steinmeyer (Max Born Institut) Entropy loopholes in multimode fiber self-cleaningNonlinear optical effects have been experimentally shown to give rise to remarkable beam self-cleaning in multimode fibers. With increasing optical power, linear-optical speckle patterns eventually condense into a few low-order modes. Recently, a thermodynamic theory emerged which explains self-cleaning as a thermalization 				

induced long-lived effects and the challenges faced by light sources based on such a				
	system.			
17:50	John Travers (Heriot-Watt University)			
	Some peculiar nonlinear dynamics in gas-filled hollow-core fibres			
	A multitude of nonlinear dynamics in gas-filled hollow-core fibres have now been			
	widely studied. In this talk, I will discuss some more peculiar results that we have			
	observed over the last few years, which have more complex explanations. Some are			
	difficult to explain at all. While deep ultraviolet generation through resonant			
	dispersive-wave emission from solitons is very well explored in noble gases, here I wil			
	discuss how these dynamics become periodic, over slow timescales, when using air a			
	the filling gas. I will also discuss a new route to supercontinuum formation through a			
	beautiful interplay between different molecular oscillations. Finally, I will show			
	evidence that gas can be (semi) permanently removed from the core of the fibre			
	through the use of very intense laser pulses. In all three cases, the explanations we			
	have developed are non-trivial and incomplete. I hope we can have some interesting			
	discussions as a result.			
18:15	Francesca Gallazzi (Tampere University)			
	Full-field real-time measurements with sub-30 fs resolution			
	In recent years the study of ultrafast dynamics, which requires real-time measurement			
	techniques, has been really active. We present here a method to characterize in real-			
	time the full-field of broadband complex optical pulses, such as the soliton fission			
	induced by noise-seeded modulation instability.			
	The measurement technique is inspired by Fourier Transform spectral interferometry,			
	which, in this case, is combined with a phase-stable broadband reference field			
	generated through self-phase modulation. Such a broadband reference is combined			
	with our test field, that presents significant shot-to-shot variations, and it allows us to			
	measure the full-field in real-time over a temporal window of 20 ps and with a			
	resolution of 25 fs. The single-shot spectral interference between reference and test			
	fields is recorded with high dynamic range using a real-time spectrometer and finally			
	the full-field (intensity and phase) is reconstructed from numerical post-processing.			
	Given the resolution below 30 fs, we are able to observe soliton-like pulses emerging			
	from the noise-seeded fission.			
	STUDENTS SESSION 1			
18:40	Dennis Kirsch (Leibniz Institute of Photonic Technology)			
	Self-mode-locking in Thulium-doped fibres via nonlinear ion pairs excited-state			
	absorption			
	Over the last decade, the ultrafast short-wave infrared (SWIR: 1600 – 2500 nm) laser			
	market has been promisingly growing, with Thulium-doped fibre systems as key			
	players. An advantageous low-loss atmospheric transmission, a deep biological tissue			
	penetration, and various absorption lines of gases and biomolecules drive the demand			
	for efficient light sources operating at this wavelength band. To unleash the potential			
	for expanding applications, the laser system must present highly integrated. cost-			
	effective, rugged, compact turn-key solutions. Broadband wavelength tuneability can			
	ensure one more level of versatility for laser systems and extend areas of their			
	applications. To implement self-mode-locking, a heavily-doped active fibre enriched			

	with Tm ion clusters has been explored to reinforce its saturable absorption mechanism with 23% modulation depth. I will also discuss intriguing implications of the saturation level, gain, and glass matrix observed both experimentally and numerically. In this presentation, I will demonstrate nearly 90 nm tuneability in ultrafast Tm-doped fibre laser spanning from 1873 to 1962 nm by implementing variable feedback for efficient control of the excitation level of the active medium. The highest laser efficiency is observed with 20% feedback, generating 580-fs soliton pulses at 1877 nm central wavelength with 1.5 nJ output pulse energy. A numerical model combining the nonlinear Shroedinger and population inversion rate equations for the gain medium helps to unveil nonlinear pulse evolution under the influence of a dynamically varying gain spectrum.	
18:50	50 Mikko Närhi (Tampere University)	
	Design on all-fiber, single-cavity dual-comb laser	
19:00	Single-cavity dual-comb lasers provide a turn-key and cost-efficient path for dual-comb spectroscopy that can provide spectra with sub-GHz resolution in milliseconds. Compared to traditional dual-comb systems, consisting of two separate frequency combs locked to each other with complex electronic feedback, the single-cavity system provides two mutually coherent combs with no active stabilization requirements. We present an experimental and numerical study on a SESAM-based single-cavity dual-comb system in an all-all fiber configuration at 1035 nm. It is shown that gain coupling of the two combs in the cavity leads to extreme sensitivity in the cavity parameters compared to traditional single-comb mode-locked lasers. Mathilde Hary (Tampere University)	
	Machine Learning Control of Nonlinear Fiber Supercontinuum Generation	
	Ine propagation of short and intense pulses of light in optical fibers exhibits a very rich landscape of nonlinear dynamics leading to dramatic changes in the pulse temporal profile and spectrum. With the development of fibers with tailored characteristics and the availability of advanced optical components, there has been in the past decade significant research efforts to harness the propagation dynamics and optimize the spectral broadening mechanisms for particular applications. Here, we combine a programmable spectral phase modulator and a genetic algorithm to optimize the nonlinear propagation dynamics to generate an on-demand target spectrum. Our approach is generic and can be adapted to a wide range of optical fibers and pump pulses.	

WEDNESDAY 26th OCTOBER

SESSION 3 - Integrated Photonics	
9:00	Alessia Pasquazi (Loughborough University)
	Self-emerging laser cavity solitons as dominant attractors of a microcomb system
	Optical frequency comb in microresonators, or 'microcombs', are optical sources composed of a set of equally spaces frequency lines obtained in nonlinear microcavities usually by Kerr nonlinearity. The discovery of dissipative temporal cavity solitons has been a fundamental breakthrough and allowed to achieve a broad, smooth spectrum particularly suitable for metrological comb applications. More recently, we demonstrated that it is possible to generate localized pulses in a configuration where the micro-cavity is inserted in a fiber laser loop. We reported the observation of laser cavity-solitons [1], which have previously attracted large attention, especially in spatial configurations. By merging their properties with the physics of both micro-resonators and multi-mode systems, this scheme represents a fundamentally new paradigm for the generation, stabilization, and control of solitary optical pulses in micro-cavities.
	In this framework, it is important to discuss the main physical features of these types of waves, including the energy efficiency and their dynamical properties, which are key for the initiation and recovery of the system. Moreover, we recently demonstrated that they can self-emerge and robustly recover [2]. Here we discuss the fundamental mechanism that transforms the laser cavity solitons in the dominant attractors of a microcomb system based on a Kerr microresonator nested in an amplifying cavity. Particularly, we discuss the effect of the slow nonlinearities of the system and how they allow the robust emergence of solitary waves in our system.
9:25	Christelle Monat (Ecole Central de Lyon, INL)
	Hybrid nonlinear integrated waveguides with 2D materials
	The recent development of silicon photonics, namely based on Si and Si derivative materials (e.g. Si3N4) has enabled the successful integration of a wide range of optical devices onto the same chip. However, due to the silicon indirect bandgap, and its high two-photon absorption at telecom wavelengths, light-emitting diodes, lasers or all-optical signal processing devices cannot be efficiently integrated in silicon monolithic architectures. III-V/ Si wafer bonding and LiNBO3 thin film technologies have already provided a successful path to increase the number of functionalities that can be heterogeneously integrated onto silicon chips, which turned hybrid. Two-dimensional materials represent another viable route to complement the properties of silicon and create very compact hybrid architectures with functionalities that silicon alone cannot achieve. I will here discuss some of these developments, in particular the demonstration of graphene/Si3N4 nonlinear waveguides for chip-based saturable absorbers. I will also present our results on the exploitation of the graphene Kerr nonlinear response for four-wave mixing processes, which turn out to be limited, practically speaking, par the very large graphene absorption coefficient. Finally, I will also discuss the potential use of alternative 2D materials for hybrid nonlinear chip-based devices.

9:50	Camille Bres (EPFL)			
	Field-induced nonlinearities in silicon nitride nanophotonics			
	In this talk, I will cover our recent results on all-optical poling of silicon nitride			
	waveguides and microresonators, including a generalized model and the possibility			
	of cascading the 2nd order nonlinear effects. I will also show recent experimental			
	work on thermally assisted electric-field poling and how charge carrier			
	concentration and waveguide dimension play an significant role in determining			
	achievable effective nonlinearities, as an necessary background to further advance			
	chi(2) based devices in SiN.			
10:15	Christian Grillet (INL-CNRS)			
	Recent progress in Broadband Mid-Infrared Supercontinuum Generation on (Si)Ge-			
	based chips			
	Mid-infrared (mid-IR) technologies are right now in high demand because of their			
	wide application domains ranging from pollution detection environmental			
	monitoring security and safety. An annealing approach is to create compact			
	molecular sensing devices in the mid-IR exploiting a high hrightness integrated			
	broadband light source such as an integrated supercontinuum source that would			
	allow the detection of several molecules in narallel. Ge-based waveguides (silicon			
	germanium-on-silicon Ge on silicon) nlatform has emerged as an attractive			
	platform for mid-IR photonics with transparency window potentially extending up			
	to 15um depending on the Ge content			
	to routin depending on the Ge Content.			
	supercontinuum (SC) generation obtained in SiGe and nure Ge waveguides. The			
	low propagation loss combined with a low poplinear loss allowed us to barness			
	nonlinear effects in these waveguides resulting in a very bright SC signal with more			
	than 10mW on-chin nower. I will also show that we can play with dispersion to			
	achieve a high degree of coherence. This coherent and high hrightness			
	supercontinuum establishes silicon germanium-on-silicon as a promising platform			
	for integrated nonlinear photonics in the mid-IR			
	SESSION 4 – Lasers and applications			
17:00	Maxime Jacquot (Université Bourgogne Franche-Comté)			
	Computer microvision-based precision motion measurement by digital holographic			
	microscopy and photonic neural networks			
	We review a selection of recent results based on the ability of light to perform			
	control or computation operations in spatial or temporal domain, in order to be			
	applied widely in areas such as computer micro-vision with digital holographic			
microscopy, and photonic neural networks implementation in hardw Photonic systems have revolutionized the hardware implementation of Recur				
	principles of Reservoir Computing strongly facilitate a realization in such complex			
	analog systems. Especially delay systems, which potentially provide large numbers			
	of degrees of freedom even in simple architectures, can efficiently be exploited for			
	information processing. We also demonstrated learning in large-scale neural			
	networks with numerous nonlinear nodes in an architecture using SLM. We will also			
	present another area of particular importance in our research institute that			

	concerns the developing of advanced imaging techniques for 3D motion			
	measurement in small-scale mechatronics and automated microscopy. This work explores extended computer micro-vision capabilities offered by combining digita			
	holographic microscopy and last generation of deep learning algorithms such Vision Transformer networks.			
	In high-tech areas such as micro-robotics and photonics, measurement			
	requirements are increasing in terms of high resolution and their controls are based			
	on multi-scale and complex parameters. Increasingly real-time processing remains			
	a big challenge for future applications, where next generation of systems will need			
	to implement new hardware architectures, maybe based on photonic neural			
	networks.			
17:25	25 Massimo Giudici (Université Côte d'Azur)			
	Temporal Localized Patterns in Vertical External-Cavity Surface-Emitting Lasers			
	(VECSELs).			
	We show that large aspect-ratio Vertical External-Cavity Surface-Emitting Lasers			
	(VECSELs) with a saturable absorber can be operated in the regime of spatio-			
	temporal mode-locking. The pulses emitted have a duration of about ten			
	picosesconds and they exhibit a spatial profile resulting from the phase locking			
	between an axial plane-wave with a set of tilted waves having a hexagonal			
	arrangement in the Fourier space. We show that these pulsating patterns are			
	temporally localized, i.e. they can be individually addressed by shining short pump			
	pulses. The theoretical analysis shows that the emergence of these temporal			
	localized patterns is a signature of a Turing instability whose critical wave vector			
	depends on spherical aberrations of the optical elements. Our result reveals that			
	large aspect-ratio VECSELs offer unique opportunities for studying fully developed			
	spatio-temporal dynamics.			
17:50	Giovanna Tissoni (Université Côte d'Azur, Insitut de Physique de Nice)			
	Spatiotemporal extreme events in a broad-area semiconductor laser with coherent			
	injection			
	Spatiotemporal extreme events are interesting phenomena, both from a			
	fundamental point of view, as manifestations of complexity in dynamical systems,			
	and for their possible applications in different research fields. Here, we present			
	some recent results about extreme events in spatially extended semiconductor			
	laser systems (broad-area VCSELs) with coherent injection. We study the statistics			
	of spatiotemporal intensity peaks occurring in the transverse (x,y) section of the			
	field perpendicular to the light propagation direction and identify regions in the			
	parameter space where extreme events are more likely to occur. Searching for			
	precursors of these phenomena, we concentrate, on one hand, on the			
	spatiotemporal dynamics of the field phase and in particular on the presence of			
	optical vortices in the vicinity of an extreme event. On the other hand, we focus on			
	the laser gain dynamics and the phase space trajectories of the system close to the			
	occurrence of an extreme event. Both these complementary approaches are			
	successful and allow us to shed some light on potential prediction strategies.			
18:15	Marco Ornigotti (Tampere University)			
	Harmonic Generation in 2D Materials in the Presence of Magnetic Fields			
	In this talk, I will discuss how different topological and geometric features, such as			
	the strain- or bend-induced magnetic fields, or tilted Dirac and Weyl cones, have			

on the nonlinear optical response of 2D materials. In particular, I will discuss the		
possibility to use Weyl semimetals as a possible platform to efficiently implement		
THz-to-visible and UV light.		
STUDENTS SESSION 2		
18:40 Antonio Cutrona (Loughborough Uni	versity)	
Stability Property of Laser Cavity-Soli	tons for Metrological Applications	
Laser cavity-solitons are optical stat	es forming in systems where a microcavity is	
nested in a fibre loop providing §	gain. Being robust and self-emergent, they	
constitute an attractive class of state	s suitable for microcomb generation. With this	
simple topology, we can achieve free	e-running fractional stability performances on	
the repetition rate (48.9 GHz) better	than 10 ⁽⁻⁹⁾ at one second gate time. While	
such performance is typical of a fibre	laser, the much higher repetition rate can be	
quite advantageous for the metrolog	ical transfer of the reference. Our free running	
laser has comparable performance w	ith maser-stabilised frequency combs.	
18:50 Boris Zabelich (EPFL)		
Linear electro-optic modulator based	on electric-field poling of silicon hitride	
Cilicon nitrido (SiN) is one of the me	est mature integrated shotenic platforms for	
linear and poplinear applications on	st mature integrated photonic platforms for	
not available in this material due to	its controsymmetric structure proventing its	
use for the three-wave-mixing and	linear electro-ontic modulation processes	
Recently it was shown that efficient	second-harmonic generation can be achieved	
in SiN waveguides via the all-ontical r	poling technique. The space-charge separation	
within the material leads to an electr	ic field inscription and therefore introduces an	
effective second-order suscentibility	$x^{(2)}$ In this work we implement thermally	
accisted electric field poling to on	χ_{eff} . In this work, we implement thermally	
microring An application of a high w	able the linear electro-optic effect in Six	
formation of the depletion region	and the inscription of a strong electric field	
reaching ~100 V/um A modulator h	ased on noted SiN microring demonstrated a	
handwidth of 1 MHz Current findin	as establish a strong groundwork for further	
advancement of $\chi^{(2)}$ -based devices of	on SiN.	
19:00 Debayan Das (Loughborough Univer	sitv)	
Hiah parametric efficiency in laser ca	vity-soliton microcombs	
Laser cavity-soliton microcombs a	re robust optical pulsed sources, usually	
implemented with a microresonator	-filtered fibre laser. In such a configuration, a	
nonlinear microcavity converts the	narrowband pulse resulting from bandwidth-	
limited amplification to a backgro	und-free broadband microcomb. Here we	
theoretically and experimentally stu	dy the soliton conversion efficiency between	
the narrowband input pulse and	the two outputs of a four-port integrated	
microcavity, namely the 'Drop' and	'Through' ports. We simultaneously measure	
on-chip, single-soliton conversion	efficiencies of 45% and 25% for the two	
broadband comb outputs at the 'Drop' and 'Through' ports of a 48.9 GHz free-		
spectral range micro-ring resonator,	obtaining a total conversion efficiency of 72%.	