

Materials and Processing Development for Sustainable Packaging Solutions

Juuso Toriseva

Doctoral Researcher
Paper Converting and Packaging Technology

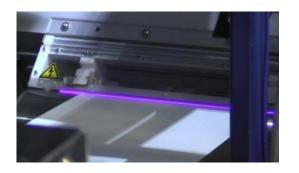
Materials Science 50th Anniversary Seminar 24.10.2019

Content

- Research group and facilities
- Packaging development
- Biobased and wood based materials
- Project examples
- Nanocellulose
- Challenges

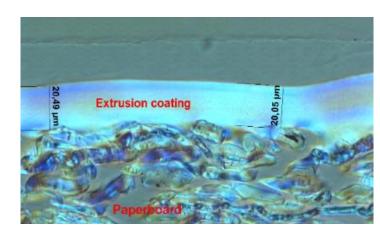
Research group of **Paper Converting and Packaging Technology**

- The research group offers teaching and research on paper, paperboard and polymer processing, converting and packaging technology, materials (wood-, fiber- and plastic-based) and products.
- R&D is focused on (co)extrusion coating, laminating, dispersion coating, wet and melt spinning and their applications.
- The development challenges of today include high-barrier and thin coatings, materials from renewable resources and sustainable packaging materials.

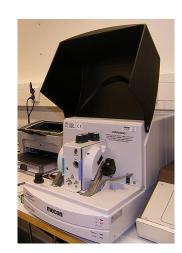

Current research topics

- High-barrier co-extruded coatings and films
- High-barrier paper and paperboard packages
- Biodegradable and bio-based coatings and materials
- Wood-based materials (e.g. lignin, cellulose) for various applications
- Active and intelligent packages solutions
- Surface functionalization of plastic films and fiber-based materials and their coatings
- Thin coatings and surface modification based on different techniques (Atomic Layer Deposition (ALD), Liquid Flame Spray (LFS), Atmospheric Plasma Deposition)
- Barrier dispersion coating

Facilities

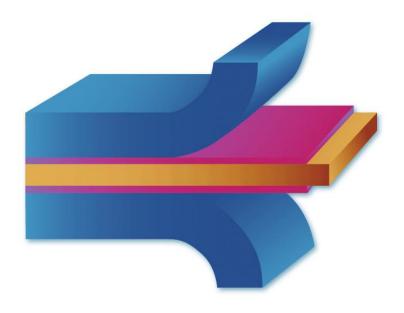

- Production of packaging materials via:
- (co)Extrusion coating and lamination
 - 4 extruders
 - 5-layer technology
 - Encapsulation possibility
- Dispersion coating (blade/rod)
- Cast film (co)extrusion
- Max. line speed 400 m/min, max. substrate width 500 mm
- Surface treatments and functionalisation,
 e.g. corona, flame, plasma, IR, UV, LFS

New investment for R2R application of nanocellulose

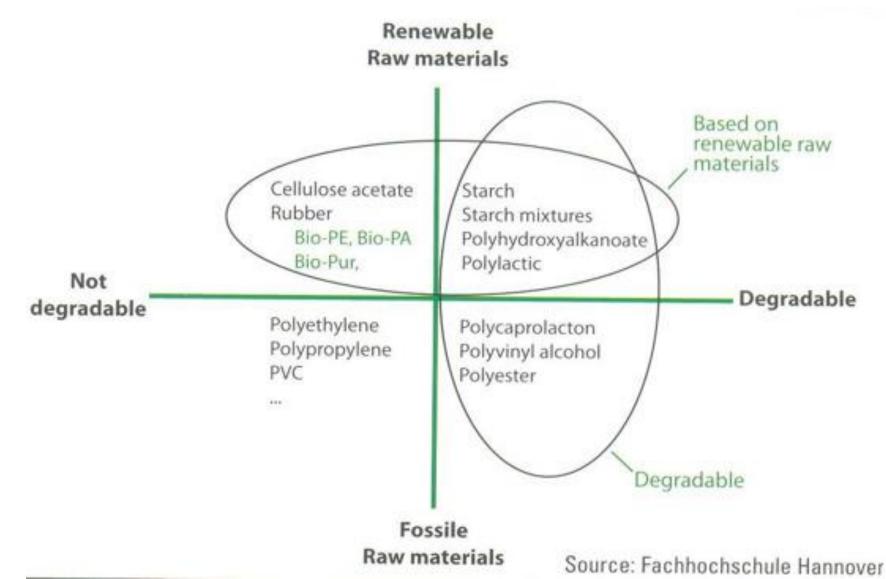


Paper Converting and Packaging Technology Laboratory

- Two environmental test chambers (23-38°C / 50-90%RH, volume 120l)
- Permeability (barrier) measurements:
 - O₂TR: MOCON Ox-Tran 2/21 MH and Ox-Tran 2/21 SS
 - WVTR: MOCON Aquatran 1G and Cup test (ASTM E96-10)
 - CO₂TR: MOCON Permatran-C 4/41
 - Grease resistance (ASTM F119-82)
 - HVTR
- Dual column material testing machine:
 Strength properties and adhesion
 measurements (90°and 180°peel)
- Contact angle and surface energy
- Heat sealability:
 - Hot bar sealing and hot tack (KOPP SGPE 20 laboratory sealer)
 - Hot air sealing
 - Ultrasonic sealing

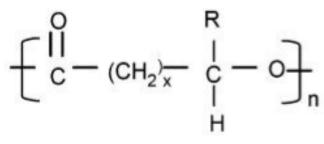


- Coefficient of friction (Qualitest FX7100-V)
- FTIR with ATR unit
- Optical microscope with polarisation contrast + microtome
- Extrusion rheometer
- Lab-scale sheet coater
- Brookfield viscometer
- Creasing perforating machine (Cyklos GPM4 50)
- Package testing:
- Hydrogen leak detector H2000
- PBI Dansensor CheckPoint O2/CO2

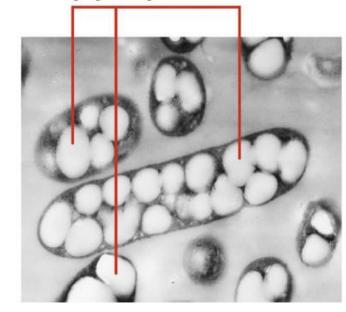

Package development

- Packaging materials are usually multilayer structures
 - ➤ "Less is more" optimisation of material selection and amount
 - > Lighter packages save energy and environment
- Circular and bioeconomy: biodegradability, compostability, environmentally friendly, recyclability, re-use....
 - ➤ Materials that are easier to recycle or re-use
 - Renewable alternatives for petroleum-based (non renewable) materials
- Trends in packaging industry (e.g.):
 - ➤ Internet shopping is increasing
 - Delivery chains are evolving
 - > Food losses should be prevented
 - Product safety/authenticity
- The demand for high quality (active and intelligent) packaging concepts is constantly increasing.

Classification of polymers based on raw materials


Environmental impact of plastics

- In food packaging...
 - energy demand would double,
 - greenhousegas emissions would triple and
 - weight of packaging materials would quadruple,
- ...If food is not packed in plastics.
- In USA food production one kilocalorie of food requires ten kilocalories of fossil fuels
 - → If reduction of plastic increses wastage, the environmental damage is ten times larger than the benefit.
- The environmental impact of one ham slice is bigger than the environmental impact of the whole package.
- Less food waste means less packages. → It is more crusial to pack properly rather than "green".

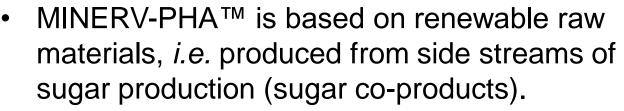


Biodegradable bio-based polymers for packaging applications

- Research group has been studying bio-based materials over 20 years (PLA, PHA, starch, etc.)
- Polyhydroxyalkanoate (PHA) is a linear polyester naturally occurring as a result of bacterial fermentation of sugar.
- There are over 150 different PHA monomers → many different material properties.
- PHB (polyhydroxybutyrates) are the most studied PHA groups. They are intracellular biopolymers formed by bacteria as carbon and energy storage.
- PHB is a homopolymer, PHBV is a copolymer with varying content of Hydroxy Valerate (HV).
- PHA can be derived e.g. from sugar beets.

Polyhydroxyalkanoates PHAs

Ref: www.bio-on.it



BioBarr H2020 project develops new **bio**-based food packaging materials with enhanced **barr**ier properties

Bio-on produces the polymer

TAU conducts casting into films

- Polymer is biodegradable. (Vincotte, TÜV)
- Polymer can be processed with existing extrusion equipment and is suitable for injection and extrusion methods for the production of coatings and objects.

Challenges with biopolymers

- Biopolymers can be moisture sensitive, which restricts their use in certain applications especially in food packaging.
- Generally, the mechanical and barrier properties are not yet at the same level compared to traditional petroleum based polymers.
- Processability and runnability of biopolymers is often limited and the "processing window" can be very narrow.
- → Converting into packaging solutions, where the requirements are very high, is challenging.
- Different definitions of biodegradability (compostability) → actual biodegradability with changing conditions?
- Terms and definitions from consumer's perspective (e.g. biobased vs. biodegradable, the amount of biobased content etc.)

Eucaliva H2020 project develops bio-based products from Eucalyptus

- Target to valorise current waste, known as black liquors from the kraft process of a Eucalyptus, separating useful components such us lignin and polyurethanes
- Lignin is the second most abundant natural polymer
- Target to develop and set-up a fully-integrated, energetically-efficient, scalable, innovative and
 flexible processing chain based on the valorisation of lignin for producing carbon fibres (CF)
 and other carbon-based materials, mainly for functional applications.
- New applications will be reached: multifunctional film-like conductive, piezo-resistive and piezoelectric materials, smart fabrics and functional fibres, as well as applications based on fibrous mats, non-woven fabrics and their carbonized derivatives.

Nanocellulose

- Group of materials, which do not have one standardized definition.
- Includes e.g.
 - Cellulose nanocrystals (CNC)
 - Cellulose nanofibrils (CNF)
 - Cellulose filaments (CF)
 - Microfibrillated cellulose (MFC)
 - Bacterial cellulose (BC)
- Not necessarily nanoscale (e.g. MFC) or not even cellulose due to chemical modification (e.g. CNC).
- Extraction by **mechanical**, chemical, or enzymatic treatment.
- Growing from bacteria.

- Mechanical properties
 - High aspect and strength to weight ratio
- Physical properties
 - Piezoelectric and optical properties
- Chemical properties
 - Oxygen barrier properties
- Rheological properties
 - Thixotropy
- Environmental properties
 - Abundant and renewable

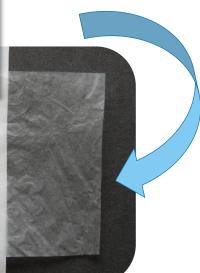
Challenges with nanocellulose

- Costs
- Application
 - Upscaling is difficult
- Solid content
 - Increasing may cause clogging and hinder dispersion
- Drying
 - High capacity is necessary and skin formation is possible
- Performance in converting
 - Folding, heat sealing etc.

- Agglomeration and redispersion
 - Strong hydrogen bonding of the fibers when dried
 - Redispersion can be difficult if not impossible
- Energy consumption caused by drying and redispersion vs. transportation of "water"
- Hydrophilicity
 - Absorbs moisture from air
 - Mechanical and barrier properties decrease
- Regulatory

From wood to films

"Biocelsol" film



Cellulose is dissolved and coagulated into film

MFC film

MFC is dried and dehydrated into film

Transparent film

Opaque film

Cellulose as raw material:

- Abundant
- Renewable raw material
- Biodegradable

Cellulose films are:

- Biodegradable
- Non toxic
- Barrier to oxygen

Applications

Packaging etc.

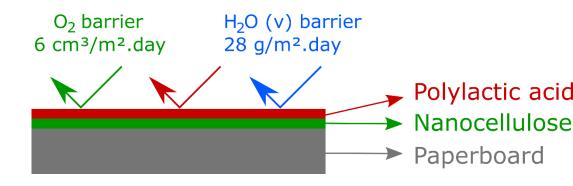
Oxygen permeability

Sample	Thickness, µm	OTR, ml m ⁻² day ⁻¹	Ref.
Cellulose	32 ± 2	8*	This work
Cellulose	32 ± 2	1**	This work
MFC	58 ± 6	3**	This work
Cellophane	21	3	а
MFC	21	17	b
Polyester	25	50 – 130	С
EVOH	25	3 – 5	С
Polyethylene LD	25	7800	С
Polyethylene HD	25	2600	С

Measurement conditions: *23°C / 50% RH / 10% O₂ ** 23°C / 0% RH / 100% O₂

References:

This work: Johanna Lahti and Taina Kamppuri, Tampere University


- a) Kjellgren and Engström (2006) Influence of base paper on the barrier properties of chitosan-coated paper. Nordic Pulp Pap Res J 21(5):685–689. DOI 10.3183/NPPRJ-2006-21-05-p685-689
- b) Syverud and Stenius (2009) Strength and barrier properties of MFC films. Cellulose 16:75-85. DOI 10.1007/s10570-008-9244-2
- c) Parry (1993) Principles and applications of modified atmosphere packaging of foods. Chapman & Hall, Suffolk

Multilayer structures

- Coextrusion technology provides multilayer structures
- Nanocellulose/MFC provides improved O₂-barrier properties
- On the other hand, NC/MFC layers can be protected with extrusion coating – PLA provides WV-barrier
- → Bio-based multilayer packaging structure

Grease barrier >84 days

Ref. Lahti, J. et al, Tappi Place 2019; Koppolu R. et al., ACS Appl Mater Interfaces (2019)

Thank You!

Juuso Toriseva

Doctoral Researcher

Paper Converting and Packaging Technology

Materials Science and Environmental Engineering

Tampere University

juuso.toriseva@tuni.fi

Further information:

- FP7: PlasmaNice http://www.tut.fi/plasmanice/
- FP7: NANOMend http://nanomend.eu/
- COST Action ActInPak: http://www.actinpak.eu/
- New wood initiative: http://www.uusipuu.fi/en/newtree
- H2020 BioBarr: http://www.biobarr.eu/
- H2020 Eucaliva: http://eucaliva.eu/
- BioÄly ("Bio-based intelligent solutions", ERDF project: http://www.bioaly.fi/