

NordSec 2021

Gollector: Measuring Domain Name Dark Matter from Different Vantage Points

Kaspar Hageman, René Rydhof Hansen, and Jens Myrup Pedersen

www.example.org

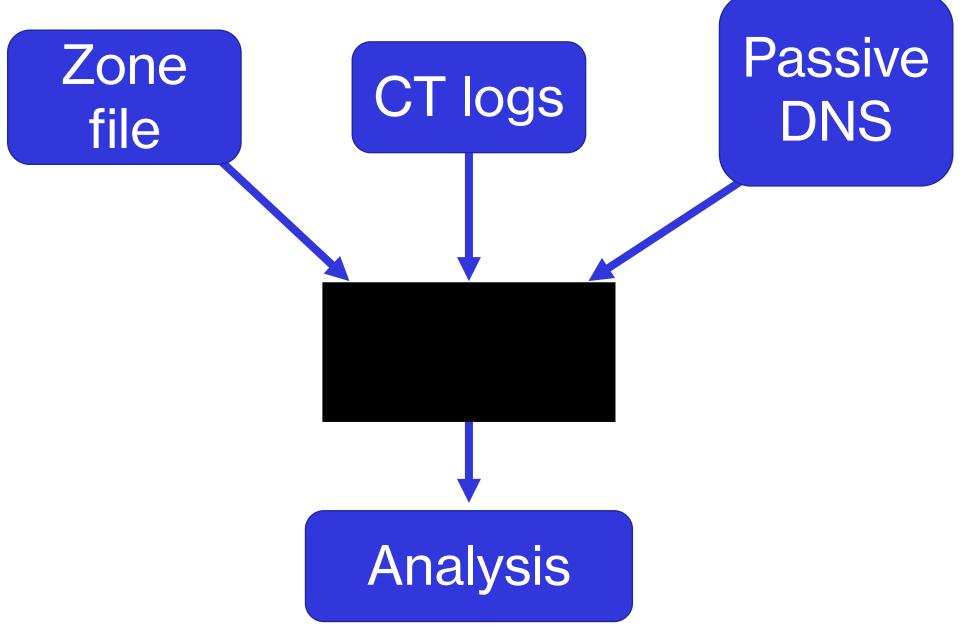
Different vantage point =

Different view of the <u>domain name</u> <u>space</u> at a <u>particular time</u>

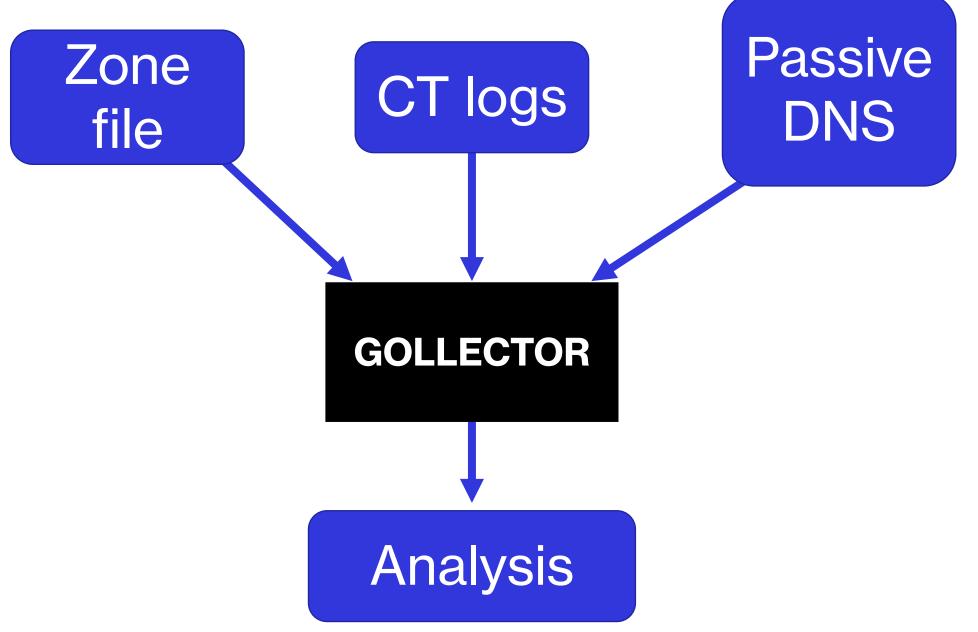
Different vantage point =

Different view of the <u>domain name</u> <u>space</u> at a <u>particular time</u>

CT log does not see domains which do no employ TLS


Passive DNS from a Russian authoritative NS does not see non-Russian domains

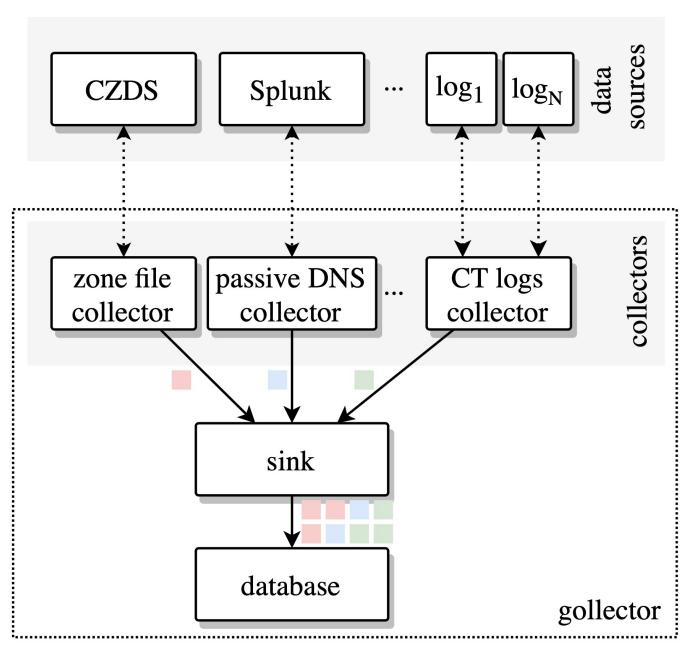
Different vantage point =

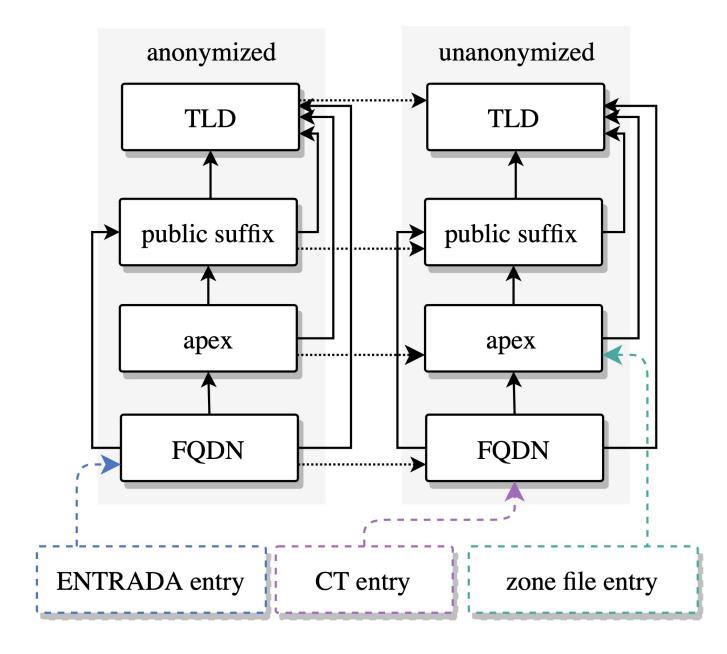

Different view of the <u>domain name</u> <u>space</u> at a <u>particular time</u>

Certain parts of the domain name space are hidden for a given vantage point

Domain name dark matter

K. Hageman et al., Gollector: Measuring Domain Name Dark Matter from Different Vantage Points


K. Hageman et al., Gollector: Measuring Domain Name Dark Matter from Different Vantage Points


Contributions

#1 DESIGN OF GOLLECTOR

#2

USE CASES OF DOMAIN NAME DARK MATTER

Use cases

Early detection of domain names

Split horizon and data leakage

Subdomain enumeration

Use cases

Early detection of domain names

Split horizon and data leakage

Subdomain enumeration

Data collection: 3 weeks of data, 4 vantage points

'Can we leverage non-zone file data for identifying domain registration early?'

Table 4: Detection of newly registered domain names for non-zone files vantage points. The results for both the full set of TLDs and the .dk zone only are shown.

All TLDs							
	Absolute				Percentual		
	CT	Passive	ENTRADA	CT	Passive	ENTRADA	
Overall	971,318	533	46,628	23.6%	0.01%	1.1%	
Before	568,436	216	25,713	13.8%	0.01%	0.62%	
Within 7 days	325,277	169	4688	7.9%	0.00%	0.11%	
.dk only							
Overall	16,476	63	46,495	34.9%	0.13%	98.5%	
Before	0	0	$25,\!673$	0.00%	0.00%	54.4%	
Within 7 days	639	3	4,601	1.35%	0.01%	9.74%	

Table 4: Detection of newly registered domain names for non-zone files vantage points. The results for both the full set of TLDs and the .dk zone only are shown.

Absolute domain registrations detected in CT dataset before zone files

All TLDs							
		Absolute	:	I	Percentual		
	CT	Passive	ENTRADA	CT	Passive	ENTRADA	
Overall	971,318	533	46,628	2 3.6%	0.01%	1.1%	
Before	568,436	216	25,713	13.8%	0.01%	0.62%	
Within 7 days	$325,\!277$	169	4688	7.9%	0.00%	0.11%	
.dk only							
Overall	16,476	63	46,495	34.9%	0.13%	98.5%	
Before	0	0	$25,\!673$	0.00%	0.00%	54.4%	
Within 7 days	639	3	4,601	1.35%	0.01%	9.74%	

As percentage of **ground truth** (zone files)

Table 4: Detection of newly registered domain names for non-zone files vantage points. The results for both the full set of TLDs and the .dk zone only are shown.

			All TLDs				
	Absolute				Percentual		
	CT	Passive	ENTRADA	CT	Passive	ENTRADA	
Overall	971,318	533	$46,\!628$	23.6%	0.01%	1.1%	
Before	568,436	216	25,713	13.8%	0.01%	0.62%	
Within 7 days	325,277	169	4688	1 7.9%	0.00%	0.11%	
.dk only							
Overall	16,476	63	$46,\!495$	34.9%	0.13%	98.5%	
Before	0	0	$25,\!673$	0.00%	0.00%	54.4%	
Within 7 days	639	3	4,601	1.35%	0.01%	9.74%	

'How much domain name information is leaked outside our university network?'

Passive DNS from network resolver

VS

Passive DNS from authoritative name server

Table 5: The 10 apex domains with the most observed unique FQDNs in the passive DNS dataset collected from the university network.

Apex domain	$\begin{array}{c} \text{Unique FQDN} \\ \text{count} \end{array}$	%
aau.dk	3,829,837	63%
googlesyndication.com	$344,\!058$	6%
technicolor.net	$61,\!151$	1.01%
${\tt cedexis-radar}.{ m net}$	44,771	0.74%
sophosxl.net	$39,\!297$	0.65%
bbsyd.net	36,758	0.61%
office.com	$30,\!215$	0.50%
emnet.dk	23,540	0.39%
obelnet.dk	22,909	0.38%
webspeed.dk	21,569	0.36%

Table 5: The 10 apex domains with the most observed unique FQDNs in the passive DNS dataset collected from the university network.

Apex domain	Unique FQDN count	%
aau.dk	3,829,837	63%
googlesyndication.com	344,058	6%
technicolor.net	$61,\!151$	1.01%
${\tt cedexis-radar}.net$	44,771	0.74%
sophosx1.net	$39,\!297$	0.65%
bbsyd.net	36,758	0.61%
office.com	$30,\!215$	0.50%
emnet.dk	$23,\!540$	0.39%
obelnet.dk	22,909	0.38%
webspeed.dk	21,569	0.36%

18,499 of these seen outside university network

2,813 both seen in- and outside university network

2,300 non-common subdomains

Table 5: The 10 apex domains with the most observed unique FQDNs in the passive DNS dataset collected from the university network.

Apex domain	Unique FQDN count	%
aau.dk	3,829,837	63%
googlesyndication.com	344,058	6%
technicolor.net	$61,\!151$	1.01%
${\tt cedexis-radar}.{ m net}$	44,771	0.74%
sophosxl.net	$39,\!297$	0.65%
bbsyd.net	36,758	0.61%
office.com	30,215	0.50%
emnet.dk	23,540	0.39%
obelnet.dk	22,909	0.38%
webspeed.dk	21,569	0.36%

18,499 of these seen outside university network

2,813 both seen in- and outside university network

Subdomain enumeration

'Can we use our dataset to intelligently find subdomains under a given apex domain?'

Subdomain enumeration

- Find subdomains that are seen under the same apex domain (graph)
- 2. Find cliques of graph
- 3. Generate candidate FQDNs based on these cliques

Subdomain enumeration

Table 6: Examples of cliques

Description	Subdomain count	Apex count	Subdomains
High-entropy subdomains	237	2	adfqjkxr, aeovrpvk, anhpfctcxzcp, asqzcggxiy, bdzvxofezaejku,
Email servers	5	34,249	imap, xwa, xas, pop, smtp
Western language-related subdomains	7	26,730	en, es, fr, pt, it, ru, de
More language-related subdomains	6	3,764	ko, zh, cs, nl, ar, ja
Content deliver network	9	5,197	cdn-1, cdn-3, cdn-2, cdn-5, cdn-7,

59% of candidates exist

That's all folks!

Gollector is available at

https://github.com/aau-network-security/gollector/

Our experiments show the utility of the tool, what's next?