Communicating Through Subliminal-Free Signatures

Dong et al.'s Signing Protocol

George Teşeleanu

Advanced Technologies Institute

Simion Stoilow Institute of Mathematics

November, 2021

Outline

- 1 Introduction
 - Simmons' Signing Protocol
 - Desmedt's Fail-Stop Channel
 - Simmons' Cuckoo's Channel
- 2 Zhang et al.'s Signing Protocol
 - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- 3 Dong et al.'s Signing Protocol
 - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- 4 Conclusions

Dong et al.'s Signing Protocol

- 1 Introduction
 - Simmons' Signing Protocol
 - Desmedt's Fail-Stop Channel
 - Simmons' Cuckoo's Channel
- - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- - Description
 - Fail-Stop Channel
 - Cuckoo's Channel

Dong et al.'s Signing Protocol

Prisoners' problem

Alice (sender) and Bob (receiver) are incarcerated.

Zhang et al.'s Signing Protocol

- They want to communicate confidentially and undetected by their guard Walter.
- Walter imposes to read all their communication.
- Subliminal channels are a possible solution to the prisoners' problem.
- Achieves information transfer by modifying the original specifications of cryptographic primitives.
- An example: modify the way random numbers are generated.

Simmons' Signing Protocol

Introduction

•0000

- 1 Introduction
 - Simmons' Signing Protocol
 - Desmedt's Fail-Stop Channel
 - Simmons' Cuckoo's Channel
- 2 Zhang et al.'s Signing Protoco
 - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- 3 Dong et al.'s Signing Protocol
 - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- 4 Conclusion

Simmons' Signing Protocol

Description

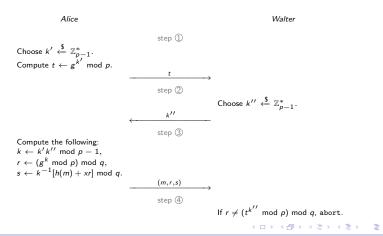
Public Parameters' Generation

- Select a prime number $q > 2^{\kappa}$.
- Select a prime number $p > 2^{\lambda}$ such that q|p-1.
- Choose an element $g \in \mathbb{Z}_p$ of order q.
- Choose a hash function $h: \{0,1\}^* \to \mathbb{Z}_q^*$.
- Output the public parameters pp = (p, q, g, h).

Introduction

00000

Description


Signer's Key Generation

■ Choose $x \stackrel{\$}{\leftarrow} \mathbb{Z}_q^*$.

Communicating Through Subliminal-Free Signatures

- Compute $y \leftarrow g^x \mod p$.
- Output the public key pk = y and the secret key sk = x.

00000

Simmons' Signing Protocol

Description

Verification

- Compute $u_1 \leftarrow h(m)s^{-1} \mod q$ and $u_2 \leftarrow rs^{-1} \mod q$.
- Compute $v \leftarrow (g^{u_1}y^{u_2} \mod p) \mod q$.
- Output true if and only if v = r. Otherwise, output false.

Communicating Through Subliminal-Free Signatures

Introduction

Desmedt's Fail-Stop Channel

- Introduction
 - Simmons' Signing Protocol
 - Desmedt's Fail-Stop Channel
 - Simmons' Cuckoo's Channel
- - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- - Description
 - Fail-Stop Channel
 - Cuckoo's Channel

Dong et al.'s Signing Protocol

Introduction

 \blacksquare To communicate ω to *Bob*, *Alice* must stop the protocol if certain conditions are not achieved.

Dong et al.'s Signing Protocol

- If the protocol is stopped too often by *Alice*, *Walter* might become suspicious and cut off any communication between the prisoners.
- Alice can only send a few bits of data to Bob through this channel.

Alice Walter step 3

Compute the following:

$$k \leftarrow k'k'' \mod p - 1$$
,

$$r \leftarrow (g^k \bmod p) \bmod q,$$

$$s \leftarrow k^{-1}[h(m) + xr] \mod q$$
.

If
$$\omega \not\equiv r \mod 2$$
 abort.

Introduction

0000

Extract

■ To extract the embedded message ω compute $\omega \leftarrow r \mod 2$.

00000

- 1 Introduction
 - Simmons' Signing Protocol
 - Desmedt's Fail-Stop Channel
 - Simmons' Cuckoo's Channel
- - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- - Description
 - Fail-Stop Channel
 - Cuckoo's Channel

00000

Introduction

- Compared to fail-stop channels, cuckoo's channels are used by a dishonest Walter to convey information to a third party.
- Just like a cuckoo that lays his eggs in the nests of unsuspecting birds. Walter inserts his message into Alice's signature without her suspecting anything.

Description

00000

Alice Walter

step ④

Choose $k'' \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$ and compute $r \leftarrow (t^{k''} \mod p) \mod q$, until $\omega \equiv r \mod 2$.

Introduction

Description

Extract

■ To extract the embedded message ω compute $\omega \leftarrow r \mod 2$.

Security

Introduction

- To achieve indistinguishablility from Simmons' protocol, Walter must use sufficient parallel computing power.
- The more power *Walter* has, the longer the conveyed message can be.
- If Walter uses α CU, then the probability of Walter transmitting his message undetected is $1-1/2^{\alpha}$.
- The cuckoo's channel presented preserves the distribution of r.

- 1 Introduction
 - Simmons' Signing Protocol
 - Desmedt's Fail-Stop Channel
 - Simmons' Cuckoo's Channel
- 2 Zhang et al.'s Signing Protocol
 - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- 3 Dong et al.'s Signing Protocol
 - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- 4 Conclusions

Public Parameters' Generation

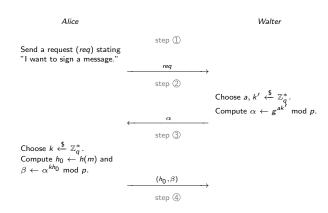
- Select a prime number $q \ge 2^{\kappa}$.
- Select a prime number $p \ge 2^{\lambda}$ such that q|p-1.
- Choose an element $g \in \mathbb{Z}_p$ of order q.
- Choose two hash functions $h: \{0,1\}^* \to \mathbb{G}$ and $h': \{0,1\}^* \times \mathbb{G} \to \mathbb{Z}_q^*$
- Output the public parameters pp = (p, q, g, h, h').

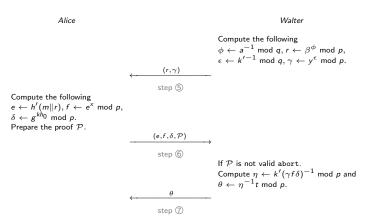
Advanced Technologies Institute, Simion Stoilow Institute of Mathematics

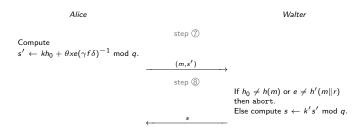
Warden's Key Generation

- Choose $t \stackrel{\$}{\leftarrow} \mathbb{Z}_q^*$.
- Compute $z \leftarrow g^t$.

Communicating Through Subliminal-Free Signatures


• Output the public key $pk_w = z$ and the secret key $sk_w = t$.


Signer's Key Generation


- Choose $x \stackrel{\$}{\leftarrow} \mathbb{Z}_q^*$.
- Compute $y \leftarrow z^x$.

Communicating Through Subliminal-Free Signatures

• Output the public key pk = y and the secret key sk = x.

Verification

- Compute $r \leftarrow g^s y^{-e} \mod p$ and $u \leftarrow h'(m||r)$.
- Output true if and only if u = e. Else output false.

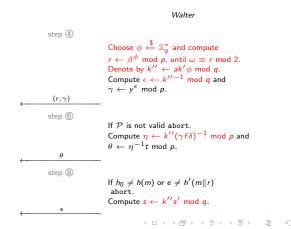
- - Simmons' Signing Protocol
 - Desmedt's Fail-Stop Channel
 - Simmons' Cuckoo's Channel
- 2 Zhang et al.'s Signing Protocol
 - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- - Description
 - Fail-Stop Channel
 - Cuckoo's Channel

Dong et al.'s Signing Protocol

Walter

Description

Extract


- Compute $r \leftarrow g^s y^{-e} \mod p$.
- To extract the embedded message ω compute $\omega \leftarrow r \mod 2$.

- I Introduction
 - Simmons' Signing Protocol
 - Desmedt's Fail-Stop Channel
 - Simmons' Cuckoo's Channel
- 2 Zhang et al.'s Signing Protocol
 - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- 3 Dong et al.'s Signing Protoco
 - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- 4 Conclusion

Alice Walter step (4) Compute the following $\phi \leftarrow a^{-1} \mod q, r \leftarrow \beta^{\phi} \mod p,$ $\epsilon \leftarrow k'^{-1} \mod q, \gamma \leftarrow y^{\epsilon} \mod p.$ (r, γ) step (6) If P is not valid abort. Compute $\eta \leftarrow k'(\gamma f \delta)^{-1} \mod p$ and $\theta \leftarrow \eta^{-1} t \mod p$. θ step (8) If $h_0 \neq h(m)$ or $e \neq h'(m||r)$ then abort. Else compute $s \leftarrow k's' \mod q$.

Alice

Extract

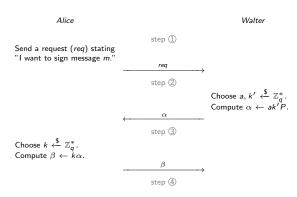
- Compute $r \leftarrow g^s y^{-e} \mod p$.
- To extract the embedded message ω compute $\omega \leftarrow r \mod 2$.

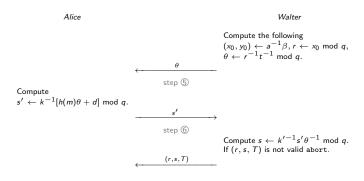
Security

- The Verification algorithm outputs true if all the steps are followed.
- According to Zhang et al., Walter will not deviate from the signing protocol.
- Thus, in Step 4, Walter has to supply Alice with (r, γ) , θ and s of a given distribution.
- The cuckoo's channel preserves the distributions of (r, γ) , θ and s.

- Introduction
 - Simmons' Signing Protocol
 - Desmedt's Fail-Stop Channel
 - Simmons' Cuckoo's Channel
- 2 Zhang et al.'s Signing Protoco
 - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- 3 Dong et al.'s Signing Protocol
 - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- 4 Conclusion

Public Parameters' Generation


- Select an elliptic curve $E(\mathbb{Z}_p)$ defined over \mathbb{Z}_p , where p is prime.
- Generate a prime number $q \ge 2^{\lambda}$, such that q divides $|E(\mathbb{Z}_p)|$.
- Generate a point $P \in E(\mathbb{Z}_p)$ of order q.
- Select a hash function $h: \{0,1\}^* \to \mathbb{Z}_q^*$.
- Output the public parameters $pp = (q, P, E(\mathbb{Z}_p), h)$.


Signer's Key Generation

- Choose $d \stackrel{\$}{\leftarrow} \mathbb{Z}_q^*$.
- Compute $Q \leftarrow dP$.
- Output the public key pk = Q and the secret key sk = d.

Warden's Key Generation

- Choose $t \stackrel{\$}{\leftarrow} \mathbb{Z}_a^*$.
- Compute $T \leftarrow tQ = (x_t, y_t)$.
- $\bullet \mathsf{Set}\ h_t = h(x_t \| y_t).$
- Output the public key $pk_w = h_t$ and the secret key $sk_w = t$.

Verification

- Compute $u_1 \leftarrow h(m)s^{-1} \mod q$, $u_2 \leftarrow rs^{-1} \mod q$ and $h_t^* = h(x_t || y_t).$
- Output true if and only if v = r and $h_t^* = h_t$. Otherwise, output false.

Communicating Through Subliminal-Free Signatures

- - Simmons' Signing Protocol
 - Desmedt's Fail-Stop Channel
 - Simmons' Cuckoo's Channel
- - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- 3 Dong et al.'s Signing Protocol
 - Description
 - Fail-Stop Channel
 - Cuckoo's Channel

Dong et al.'s Signing Protocol

•00

Fail-Stop Channel

Description

Alice

Walter

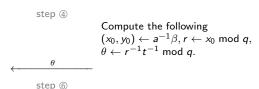
Compute
$$(x_s, y_s) \leftarrow \theta^{-1}Q$$
. If $\omega \not\equiv x_s \mod 2$ abort. Compute $s' \leftarrow k^{-1}[h(m)\theta + d] \mod q$.

s'

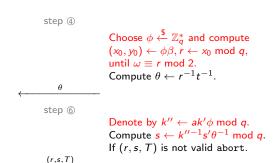
step (5)

Extract

- Compute $rT = (x_s, y_s)$.
- To extract the embedded message ω compute $\omega \leftarrow x_s \mod 2$.


Cuckoo's Channel

- 1 Introduction
 - Simmons' Signing Protocol
 - Desmedt's Fail-Stop Channel
 - Simmons' Cuckoo's Channel
- 2 Zhang et al.'s Signing Protoco
 - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- 3 Dong et al.'s Signing Protocol
 - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- 4 Conclusions


Cuckoo's Channel

Description

Compute $s \leftarrow k'^{-1}s'\theta^{-1} \mod q$. If (r, s, T) is not valid abort.

Cuckoo's Channel

Cuckoo's Channel

Description

Extract

■ To extract the embedded message compute $\omega \leftarrow r \mod 2$.

Security

- The *Verification* algorithm outputs true if all the steps are followed.
- The cuckoo's channel preserves the distributions of θ and (r, s).

Communicating Through Subliminal-Free Signatures

- - Simmons' Signing Protocol
 - Desmedt's Fail-Stop Channel
 - Simmons' Cuckoo's Channel
- - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- - Description
 - Fail-Stop Channel
 - Cuckoo's Channel
- 4 Conclusions

Dong et al.'s Signing Protocol

Conclusions

- Zhang et al. and Dong et al. propose two signature protocols that they claim to be subliminal-free.
- We have proved that their claims are false.
- Since, the main utility of these protocols was to be subliminal-free and they failed to be so, we suggest that users employ other means of protection against subliminal channels with a lower communication overhead.

Communicating Through Subliminal-Free Signatures

Dong et al.'s Signing Protocol

Questions?