

Elastronics, Overview and Main Achievement

Prof. Matti Mäntysalo
Tampere University
matti.mantysalo@tuni.fi
https://research.tuni.fi/lfe/

Tampere University Electrical Engineering

- Tampere University is the second largest University in Finland.
- ICT and electrical energy systems form the main application umbrellas. The activities comprise the following three main areas:
 - <u>Electronics and Embedded Systems</u>
 - Electrical Energy Systems and Power Electronics
 - Communications Engineering and Radio Systems

Electronics and Embedded systems

Printed Hybrid Electronics

- Flexible and stretchable
- 3D and structural electronics
- Wearable and skin conformable

Thin-film electronics

- Internet-of-Everything
- Thin-film devices and circuits based on printing and ALD

Electronics and energy

- Energy harvesting and management systems
- Low-power electronics
- Energetic systems

Embedded systems

- Ambient intelligence and augmented reality
- User interfaces, communication, IoT and services
- Smart textiles

https://www.tuni.fi/en https://www.tuni.fi/en/about-us/electrical-engineering

research.tuni.fi/lfe

Tampere University

Tampere University Laboratory for Future Electronics (LFE)

- LFE investigates technologies and solutions related to energy-autonomy (storage and harvesting), sensors, conformable wearable electronics (soft/stretchable, on-skin, textile), and **hybrid system** integration.
- Strong emphasis is placed on scalable, low-cost manufacturing methods such as printing as well as their integration with more conventional component assembly methods.
- LFE explores new device and circuit approaches based on printable organic and metal oxide semiconductors.

Elastic

Elastic Electronics

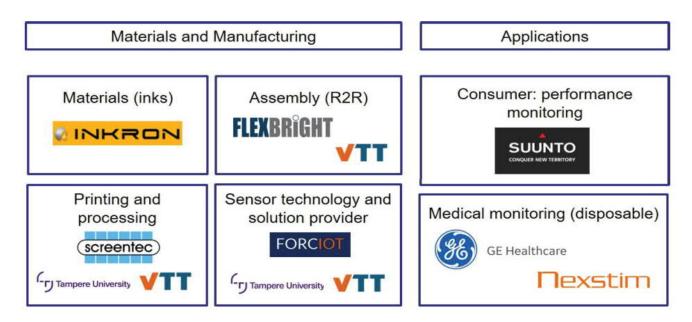
Soft robotics /machinary

Aviation

Human-machine interface

Smart building

The aim of the ELASTRONICS –project is to enable the transformation of stretchable devices into a mass-producible technology.

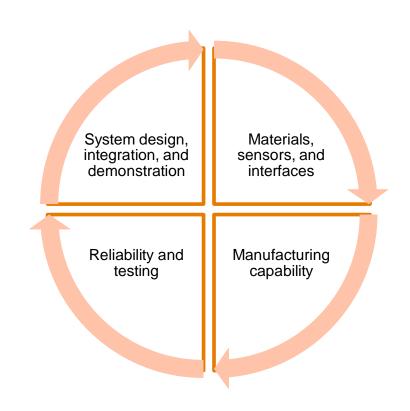


9.10.2020

Funding: Business Finland Schedule: 9/2018-10/2020

ELASTRONICS - enabling the future of wearable electronics

ELASTRONICS focused on cost-effective **stretchable** and **ultra-thin** Hybrid Printed Electronics (HPE) to overcome the challenges of current bulky and uncomfortable wearable electronics (skin patches and e-textile).

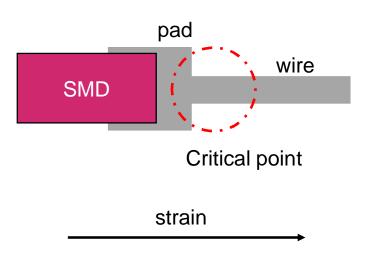

Contact: matti.mantysalo@tuni.fi Tampere University teemu.alajoki@vtt.fi VTT

Funding: Business Finland Schedule: 9/2018-10/2020

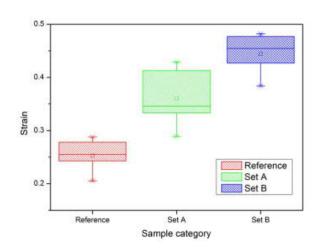
ELASTRONICS - enabling the future of wearable electronics

ELASTRONICS –project focus:

- 1. Stretchable electronics technologies suitable for mass manufacturing
- 2. Comprehensive understanding of failure mechanics, testing methods, and practical ways to improve the reliability
- 3. Design and manufacturing guidelines
- Manufacturing capability for stretchable/soft electronics including assembly of thin circuits.



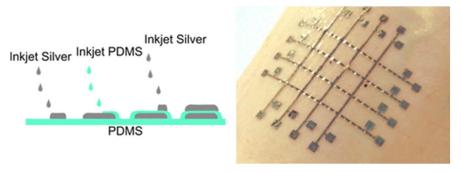
Contact: matti.mantysalo@tuni.fi Tampere University teemu.alajoki@vtt.fi VTT



Improving the performance of printed stretchable electronics

The stretching performance can be improved by locally tuning the stiffness

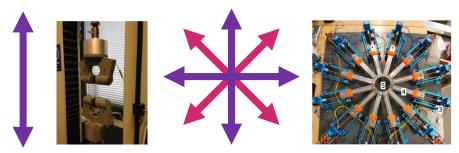
- 1. FE Modeling
- 2. Measurements (DIC and electromechanical)


More information:

D. Di Vito, et al., Sci. Rep., vol. 10, no. 1, p. 12037, Dec. 2020.

M. Mosallaei, et al., Flex. Print. Electron., vol. 5, no. 1, p. 015004, Jan. 2020.

Fabricating epidermal electronics



Pritting PDMS multilayers

Transparent piezosensors

Testing

Uni-axial testing

Multi-axial testing

- Single-pull
- Cycling test
- Creep
- Rolling
- Environmental aging

More information:

R. Mikkonen, et al., ACS Appl. Mater. Interfaces, vol. 12, no. 10, pp. 11990–11997, Mar. 2020.

K. M. Lozano Montero, et al., in *Proc. of the 8th Electronics System-Integration Technology Conference (ESTC)*, 2020

Summary

- Modeling, simulations, and testing are the key elements for estimating the reliability and durability of stretchable electronics
- Geometry modification together with hybrid printed electronics can provide the reliability and scalability needed
- Thin and conformable sensors are capable to produce high-quality signal
- Several scientific theses, journals and conference articles have and will be published. Please follow us in coming days.

Acknowledgement

BUSINESS FINLAND

The team worked in the project.

Contact: matti.mantysalo@tuni.fi Tampere University teemu.alajoki@vtt.fi VTT